Американские ученые научились запускать регенерацию у взрослых лягушек. Для этого они накладывали на место ампутированной лапы гидрогель с сигнальными молекулами. В результате вместо бесформенного отростка, как обычно, у экспериментальных животных выросли полноценные лапы — не до конца сформировавшиеся внешне, но абсолютно функциональные. Работа опубликована в журнале Science Advances.
Считается, что когда-то все четвероногие позвоночные умели хорошо регенерировать, но постепенно большинство из них эту способность потеряли. Сейчас с легкостью отращивать себе новые конечности могут разве что саламандры и головастики. А у млекопитающих даже детеныши с этой задачей почти не справляются — известно, что зародыши у мышей могут восстановить отрезанный кончик пальца или кусочек сердечной ткани, но о целых частях тела речи не идет.
Поэтому ученые ищут способы заставить позвоночных вернуть себе утраченные способности своих предков. В ход идут самые разные методы: биоинженерные каркасы, электростимуляция, пересадка стволовых клеток и обработка разными сигнальными молекулами. Майкл Левин (Michael Levin) из Университета Тафтс вместе с коллегами сделали ставку на последний подход.
Эта группа исследователей работает со шпорцевой лягушкой Xenopus laevis — ее часто используют в регенеративных исследованиях, поскольку это один из тех случаев, когда головастик отращивает части тела довольно хорошо, а взрослая особь эту способность теряет. В предыдущей работе они обнаружили, что гормон прогестерон неплохо стимулирует регенерацию — однако он помог только улучшить рост самой по себе хрящевой ткани, но не восстановить структуру конечности.
Поэтому ученые решили использовать сразу несколько сигнальных молекул — чтобы запустить регенерацию всех тканей, составляющих лягушачью лапу. Они собрали коктейль из веществ, которые должны были не только стимулировать рост тканей, но и восстанавливать работу нервных клеток и подавлять воспаление. Получился набор из пяти веществ: 1,4-DPCA, BDNF (мозговой нейротрофический фактор), гормон роста, ретиноевая кислота и резолвин D5. Растворами этих пяти веществ ученые пропитали гидрогель на основе шелкового белка, а контейнер с этим гидрогелем (BioDome) пришили лягушкам к раневой поверхности.
Сигнальные молекулы проработали всего 24 часа — после этого контейнер сняли. Но этого оказалось достаточно, чтобы исследователи заметили результат, правда, не сразу, а через несколько месяцев. До 6-8 месяца конечности росли похожими темпами у тех животных, что получили сигнальный коктейль, и у тех, кому достался контейнер с плацебо. Но с 9-го месяца исследователи зафиксировали разницу, и экспериментальная группа продолжила обгонять группу плацебо вплоть до 18 месяцев наблюдения.
У контрольной группы, которую ничем не обрабатывали, на месте конечностей образовались бесформенные отростки. У 20 процентов лягушек из группы плацебо ученые заметили что-то промежуточное между бесформенной тканью и конечностью, но без признаков разделения на участки, характерные для задней лапы. В то же время, у 76 процентов животных из «группы коктейля» выросли части тел, напоминающие лапу: с уплощенным концом и перепонками между аналогами пальцев.
При этом, судя по всему, у животных произошло то же, что и у головастиков. Последние, когда лишаются конечности, сначала образуют бластему — это бугорок из недифференцированных клеток (которые получаются из дифференцированных). А затем уже клетки бластемы делятся и заново получают специализацию, превращаясь в клетки кости, мышц и кожи. У лягушек с ампутированными лапами под действием сигнальных веществ рана закрывалась медленнее (p < 0,05), чем у других групп в эксперименте — а значит, в ней слабее развивалось воспаление, и у клеток было больше времени превратиться в бластему. После закрытия раны бугорок все равно оставался больше, чем у других групп, а клетки в нем экспрессировали основной маркер бластемы SOX2 в шесть раз сильнее, чем в контрольной группе.
Отсканировав регенерировавшие участки тела, ученые заметили разницу и на микроскопическом уровне. Например, у «группы коктейля» оказалось не только больше костей по массе (p < 0,05) — эти кости были плотнее, а снаружи на них появились бугорки и впадины, которые в норме должны служить для прикрепления сухожилий и мышц. Кроме того, у этой группы в отрощенных конечностях обнаружилось больше сосудов и нервных волокон. Чувствительность этих волокон, как выяснили авторы статьи, восстановилась до уровня здоровой конечности. По крайней мере, большинство лягушек из «группы коктейля» отдергивали регенерировашие лапы при малейшем прикосновении. Исследователи также заметили, что животные пользовались ими, чтобы плыть в сторону еды или уплывать от громких звуков.
Авторы работы призывают сделать из своего успеха несколько важных выводов. Первый состоит в том, что на успех регенерации влияет микроокружение, причем на самом раннем этапе. Даже те животные, которым пришили силиконовый контейнер с плацебо, отращивали части лап успешнее, чем те, кто остался без контейнера. Возможно, уже сам по себе контакт с гидрогелем тормозит закрытие раны на ампутированной лапе и запускает какие-то важные процессы в клетках на раневой поверхности.
Второй вывод состоит в том, что даже у животного, которое утратило способности к регенерации, их можно восстановить или хотя бы приблизить к тому уровню, на котором ими обладают ранние стадии его развития. В этом смысле лягушка, конечно, более удобный объект, чем мышь или человек — у ее личинок эти способности развиты хорошо. Поэтому возможно, на млекопитающих эти результаты будет сложнее перенести напрямую. К тому же, отмечают исследователи, даже лягушачья лапа отрастает долго — эксперимент длился полтора года. Неизвестно, насколько осмысленно пытаться такими же темпами отращивать конечности у человека.
https://nplus1.ru/news/2022/01/26/frog-regenerating |