Чтобы избежать растворения азота в крови, морские львы при погружении перегоняют запас воздуха из альвеол в трахеи, где газообмен с кровью невозможен. Когда приходит время всплывать, животные гонят воздух назад, из трахей в альвеолы, и тем самым обеспечивают себя кислородом на время всплытия.
Зоологи давно ломают голову над тем, как водные млекопитающие выдерживают резкие перепады давления и при этом не страдают от кессонной болезни. Известно, что на больших глубинах при возрастающем давлении азот растворяется в крови, а когда давление падает, то есть когда человек или животное поднимаются с большой глубины, азот снова переходит в газообразное состояние. Если этот процесс пойдёт слишком быстро, кровь в буквальном смысле «вскипит» от выходящего из него газа, что чревато тяжёлыми повреждениями внутренних органов, которые часто приводят к смерти.
Исследователи из Института океанологии Скриппса (США) сумели разгадать эту загадку — по крайней мере для морских львов. Самке калифорнийского морского льва вводили специальный датчик, который отслеживал содержание кислорода в крови и одновременно фиксировал время и глубину погружения животного. Затем животное отпускали на волю.
Как пишут исследователи в статье, опубликованной в Biology Letters, на глубине 225 метров у морского льва происходило резкое снижение содержания кислорода в крови: лёгкие животного сжимались и прекращали подачу газа. Сжатие лёгких, уменьшение их размера — обычное явление у водных млекопитающих. После этого морской лев ещё какое-то время продолжал плавать под водой и погружался до 300 метров. Затем он начинал всплывать: на глубине примерно 247 метров лёгкие снова расправлялись, и концентрация кислорода в крови поднималась. Общее время одного такого нырка составляло в среднем шесть минут.
Когда лёгочные альвеолы сжимаются, в них прекращается газообмен — а следовательно, азот в кровь тоже не попадает. Но как тогда животным хватает кислорода на подъём? Оказалось, что после сжатия лёгких морские львы сохраняют запас воздуха в верхних отделах дыхательных путей — больших бронхиолах и трахеях. Ткани трахей и крупных бронхиол не могут осуществлять газообмен, и воздух в них остаётся нетронутым: ни ценный кислород, ни опасный азот в кровоток не попадают. Потом, когда приходит время всплывать, воздух отсюда перегоняется обратно в альвеолы.
Скорее всего, похожий механизм защиты от кессонной болезни используют и другие ластоногие, но это всё равно придётся проверить. Некоторые из них (к примеру, морские слоны) погружаются на глубину до полутора тысяч метров, и, возможно, у них есть ещё более изощрённые методы, позволяющие им не задохнуться и одновременно избежать кессонной болезни при подъёме.
http://science.compulenta.ru/708994/ |