Суббота, 23.11.2024, 12:59 | Приветствую Вас Гость | Подписка на новости сайта
Меню сайта

Темы
Чупакабра [787]
Снежный человек [1101]
Морские чудовища [1014]
Сухопутные твари [899]
Летающие монстры [246]
Подземные твари [60]
Динозавры,мегафауна [1527]
Теория [1224]
Акулы [266]
Бабочки [156]
Грибы [214]
Гусеницы [61]
Дельфины [173]
Ежи [37]
Жуки [115]
Зайцы [32]
Змеи [256]
Кальмары,осьминоги [193]
Киты [286]
Копытные [578]
Кораллы [157]
Кошачьи [809]
Крокодилы [113]
Крысы,мыши [356]
Летучие мыши [167]
Лягушки [203]
Медведи [343]
Медузы,моллюски [219]
Микроорганизмы [618]
Морские звезды [40]
Морские львы,тюлени [150]
Муравьи [250]
Мухи,комары [284]
Насекомые [394]
Обезьяны [653]
Пауки [321]
Пингвины [94]
Псовые [650]
Птицы [1140]
Пчелы [356]
Ракообразные [197]
Растения [623]
Рыбы [890]
Саранча,кузнечики [29]
Слоны [152]
Сурикаты,грызуны [308]
Тараканы [57]
Улитки [77]
Хамелеоны [18]
Черви [211]
Черепахи [131]
Ящерицы [190]

Интересное
Аномальные новости

Хроники природных катастроф

Календарь
«  Сентябрь 2013  »
ПнВтСрЧтПтСбВс
      1
2345678
9101112131415
16171819202122
23242526272829
30

Архив новостей

Реклама

Логотип сайта

Форма входа

Главная » 2013 » Сентябрь » 20 » Как насекомые помогают в создании новых материалов и методов лечения

09:58
Как насекомые помогают в создании новых материалов и методов лечения
Аэрозоли, фумигаторы всех мастей, противомоскитные сетки — чего только не придумал человек для борьбы с насекомыми, но самые упорные из них всё равно гордо и с достоинством преодолевают эти преграды. А мы лишь досадуем.



Чтобы победить этого врага, его нужно знать в лицо, уверены Джефф Яргер (Jeff Yarger) из Университета штата Аризона (США) и его коллеги. Применив самые современные лабораторные рентгеновские приборы, они тщательно исследовали структурные особенности материалов, производимых отдельными беспозвоночными членистоногими, и пришли к выводу, что часть из них можно обернуть против самих насекомых.

К примеру, ручейники (их взрослые особи напоминают ночных бабочек) производят липкую паутину, которая, в отличие от обычной, применяется ими исключительно под водой — как для ловли добычи (края сети крепятся к камням вдоль берегов), так и для строительства укрытий.

Паутина ручейников...

«Она не сильно прочнее, чем суперклей, но вы попробуйте приклеить что-нибудь суперклеем в ванне, не давая ему при этом высохнуть», — делает нам заманчивое предложение Джефф Яргер. Возможность создать клей, работающий под водой, бесспорно, весьма ценна: в обычных условиях попытка залатать течь в трубе требует слива жидкости, что в целом ряде случаев просто невозможно, ведь мало кто согласится выводить из эксплуатации, к примеру, трубы отопления в зимний период.

Ещё более важным применением такого вещества может стать создание искусственных сухожилий и связок, при помощи которых наконец-то удастся приблизиться к полноценному протезированию этих уязвимых тканей. Длинные нити, созданные по образу и подобию паутины ручейников, ведут себя как коллаген в соединительных тканях, при этом оставаясь устойчивыми к жидкостям, постоянно окружающим такие материалы в человеческих суставах.

Подвергнув биополимеры, лежащие в основе такой паутины, рентгеноструктурному анализу, исследователи обнаружили, что они радикально отличаются от паутины пауков или нитей шёлкового шелкопряда. Эта паутина фосфорилирована, то есть после того, как организм создаёт составляющие нить аминокислоты, к молекулярной цепочке присоединяются фосфаты. Мы уже используем фосфаты для создания некоторых водоустойчивых красок, однако их объединение с клеящими веществами пока не исследовалось химпромом. Получив такую бионическую подсказку, химики вполне способны повторить изобретения ручейников в сравнительно короткие сроки.

Установки рентгеноструктурного анализа, принадлежащей Аргоннской национальной лаборатории (США), не миновала и наша заклятая подруга саранча. Нет нужды говорить о масштабе ущерба от этого насекомого: подробное освещение проблемы можно найти даже в древнеегипетских источниках и Ветхом Завете. Впрочем, пожалуйста: крупнейшее зарегистрированное облако саранчи, накрывшее за один раз 513 000 км², состояло из 12,5 трлн особей, а весило 27,5 млн т. Учитывая, что каждое из таких насекомых съедает в день столько растений, сколько весит само, апокалиптический масштаб угрозы очевиден. Борьба с помощью химикатов, увы, не так проста: преодолевая за день до 500 км, саранча появляется внезапно, распылять же пестициды до её прилёта бессмысленно, постольку траекторию этой напасти вычислить невозможно. После того как вредитель оккупирует поле, за него тоже можно не беспокоиться: скорее всего, насекомые, съев всё подчистую, улетят за несколько часов до того, как вы приступите к активным действиям.

Но вот Скотт Кирктон (Scott Kirkton) из Юнион-колледжа (США), используя рентгеновские снимки сверхвысокого разрешения, выяснил, что перед очередной линькой в каждой из жизненных фаз саранчи ей становится тесно в старой оболочке. От этого трахеи насекомого сдавливаются и деформируются хитиновым экзоскелетом, ему становится трудно дышать, что приводит к снижению активности и вызывает саму линьку. Для проверки полученных данных саранчу держали в бедной кислородом атмосфере, и оказалось, что в таких условиях она линяет до срока — будучи ещё слишком маленькой для следующей жизненной фазы. Поскольку сбиваться в триллионные тучи саранча начинает после очередной линьки (до этого она, живущая поодиночке, совершенно безвредна), чтобы снизить ущерб от нашествий, семенное зерно следует хранить в условиях малого доступа к кислороду. «Слишком быстрая линька приведёт к появлению меньших по размерам взрослых особей, с не очень хорошим аппетитом и урезанной общей продолжительностью жизни», — поясняет г-н Кирктон.

Впрочем, линька свойственна подавляющему большинству насекомых-вредителей, уточняет учёный, оттого после дополнительной проверки на других видах метод вполне можно использовать для борьбы едва ли не со всеми вредителями, которые инфицируют семена культурных растений. И безо всяких пестицидов! При этом малые физические размеры семенного фонда позволяют легко держать его в обеднённой кислородом среде, хотя, конечно, тут может ждать другая проблема: надо постараться не переборщить и не создать слишком благоприятные условия для развития грибков.

Ну а третья группа исследователей во главе с Томом Дэниэлом (Tom Daniel) из Вашингтонского университета (США), работавшая с той же техникой, анализировала мышечные усилия машущей крыльями моли. В этом смысле мускулы насекомых являются древней загадкой, никак не поддающейся разрешению. Та же моль способна резко ускоряться с места, а затем стремительно тормозить. Теоретически её организм просто не может выдать достаточно мощности для подобных рывков, и тем не менее каждый из нас может убедиться, что моль успешно делает это.

Так вот, на сей раз анализ её движений неожиданно показал, что верхняя часть грудного отдела, где находятся мышцы, развивающие основные усилия при биении крыльев, почему-то имеет температуру меньше, чем нижняя часть туловища, мышцы в которой вообще очень мало задействованы при взмахах.

Это кажется не очень логичным, ведь при механической работе в организме моли выделяется тепло. Картина, казалось бы, должна быть прямо противоположной: чем сильнее трудится мышца, тем теплее она должна быть! Рассмотрев ситуацию при помощи рентгена высокого разрешения, учёные установили, что нити миозина (протеина, составляющего часть мышечных волокон) тянут нити актина (другого компонента тех же волокон) при сокращении мышц. Все эти нити формируют решёткоподобную структуру. Она упруга и способна хранить энергию упругой деформации долгое время. По сути, создаётся накопитель энергии, а не мотор (как думают многие биологи). Сокращение же мускулов больше похоже на срабатывание пружины после удаления удерживающего её веса, нежели на прямое действие моторов обычного типа.

На относительно холодных участках мускулатуры моли нити протеинов оставались соединёнными в решёткоподобную структуру дольше, чем в нагретых областях, но значило это не то, что тамошние мышцы недорабатывают. Напротив, они дольше накапливают энергию для более сильного сокращения. А за время такого ожидании мышца успевает сильнее охладиться, тем самым создавая впечатление своей малой используемости. Более того, именно из-за малой температуры мышцы способны так долго удерживать нити миозина и актина в виде решётки, накапливая энергию для мощного рывка.

Словом, исследователям удалось обнаружить новый механизм хранения энергии в мышце, а это очень важно, особенно если вспомнить, что мышцы моли и человека структурно не слишком различаются. Очевидно, полагают авторы работы, накопление потенциальной энергии упругой деформации играет значительную роль и в наших мускулах, что может заметно продвинуть протезирование конечностей и помочь в лечении заболеваний, атакующих мускулатуру человека.

http://compulenta.computerra.ru/chelovek/biologiya/10009082/
Категория: Насекомые | Просмотров: 2977 | Добавил: Sergo | Рейтинг: 0.0/0


Последние новости

Снежный человек реален и у него есть дети (43)

Опровергнута принадлежность вымершего капского льва к отдельному подвиду (32)

Выявили вирус, поражающий камчатского краба (23)

Эфиопские шакалы оказались сластенами (27)

Окрас морды скрывает взгляд (23)

Гигантские шершни добрались до Европы (23)

Моллюски подсказали, как «делать уколы» без игл (19)

Открыт новый вид пауков-птицеедов (22)

Некоторые пещерные рыбы, вероятно, могут жить без сна (21)

Фотограф запечатлел полностью черного пингвина (21)

Найдено "связующее звено" между птерозаврами и птеродактилями (34)

Обнаружены аналоги оптоволокна в раковинах моллюсков-сердцевидок (17)

Северные участки Большого Барьерного рифа потеряли треть кораллов (20)

Орнитологи предложили считать тонкоклювого кроншнепа вымершим (26)

Зачем животные едят фекалии (26)

Чью сторону выбирает собака в семейной ссоре (23)

Несси снова заметили (52)

Криптозоолог ошеломлен после близкого столкновения (40)

Обнаружен новый вид геккона с удлиненными конечностями (27)

Трепанга научились выращивать в заводских условиях (24)

Дайвер запечатлел яркого морского дракона с икрой (22)

Пластилин помог зоологам узнать, кто нападает на дождевых червей (31)

Загадка Буньипа. Легенда о мифическом существе Австралии (69)

Впервые расшифровали геномы ручных и агрессивных крыс (20)

У побережья Соломоновых Островов обнаружили самый большой в мире коралл (25)

Впервые обнаружено игровое поведение у зверя из отряда зайцеобразных (23)

Обнаружено питающееся пластиком живое существо (28)

Открыли неизвестный вид полупрозрачного голожаберного моллюска (23)

Два вида водяных блох надели «терновые венцы» (17)

Королевские питоны оказались неожиданно «общительными» (21)

Декоративные собаки превзошли служебных по размерам мозга (19)

Подтвердили наличие жирового горба у шерстистого носорога (24)

Суслики восстановили экосистему после извержения вулкана (25)

В водных путях Вурунтьери нашли бактериофаги, убивающие супербактерии (21)

Бигфут террорезирует маленький городок Коннектикута (84)

Охотник на чудовищ пережил близкую встречу (72)

Шимпанзе постарались выглядеть умнее в глазах людей (33)

Некоторые «божьи черновики» могли пережить кембрийский взрыв (49)

Чернобыльские лягушки стали устойчивы к высоким уровням радиации (31)

Глубинные кораллы населяют микробы-симбионты с коротким геномом (27)

Физик описал тыгыдыки кошки с помощью стохастических методов (30)

Объяснили причину встряхивания млекопитающих после намокания шерсти (34)

В Севастополе рассчитали опасность исчезновения важнейшего обитателя моря (36)

Таинственные криптиды и чудовищные существа (73)

Бигфут прошел перед охотничьей камерой в Индиане (57)

Жирные кислоты обеспечили выживание растений в Арктике (28)

Зачем мыши хвост и как он связан с нейродегенеративными заболеваниями (40)

Как бактерии адаптируются к жизни в нефти (31)

Оглохшие самцы комаров потеряли интерес к сексу (31)

Загадка Конголезской Змеи (75)

Поиск


Популярное

Дикие люди Китая (34703)

Чупакабра напала на жителя Одесской области (23245)

Растения, питающиеся животными, издавна вселяли в сердца людей страх (22988)

Русские монстры: от древности до наших дней (21249)

Поведение хищников опровергает правила естественного отбора (16986)

Атлантическая треска может исчезнуть из-за роста кислотности океана (16603)

Загадочный Каспий. Морские монстры, НЛО, русалки (15839)

Морского червя приняли за инопланетянина (15718)

Откуда вынырнули русалки? (15466)

На дне Марианской впадины обитают чудовища (15318)

Славянская мифология. Сказочные существа. Часть 3 (15012)

В произведениях Говарда Лавкрафта действуют чудовища, живущие под землей (14807)

В Марианской впадине нашли загадочных существ и инопланетных гостей (14528)

Неведомое существо обитает в Приморье (14470)

Логово снежного человека обнаружено в США (13869)

В Риме гигантские сомы-мутанты пожирают птиц и крыс (13484)

Ровенский селянин поймал двух упитанных «чупакабр» (12291)

Чупакабра добралась до Воронежской области (12256)

10 неожиданно опасных пород собак (12255)

Монстры океанов (12115)

Морской змей в Черном море (11706)

Кракен - чудовище из морской бездны (11701)

Похороны настоящей… русалки (11504)

Крылья бабочки помогут создать антибликовое покрытие экранов (11483)

Распутывая ДНК бигфута (11296)

Обнаружено самое уродливое существо на планете (11260)

Страшное насекомое замечено в Индии (11135)

Рыба-мутант: что можно найти в водах Севана (11072)

Сказки - старшилки про Бабу-Ягу, Кощея Бессмертного и Змея Горыныча (11059)

Когда просыпаются русалки (11030)

Крысы умнее, чем Google (11026)

Львы дружески трутся друг о друга (10952)

В китайской гробнице нашли вымершее существо (10875)

Экологи просят защитить карадагское чудовище (10838)

Грибы-монстры - пришельцы из космоса (10749)

Мертвого загадочного зверя из США опознали (10693)

Монстры уходят на глубину (10635)

Кого боятся белые акулы (10585)

Хайгейтские вампиры (10353)

Морские дьяволы (10278)

Проект "Криптозоология" © 2010-2024 При использовании материалов с сайта активная ссылка на него обязательна

Яндекс.Метрика